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We study conditioned random-cluster measures with edge-parameter p and
cluster-weighting factor q satisfying q \ 1. The conditioning corresponds to
mixed boundary conditions for a spin model. Interfaces may be defined in the
sense of Dobrushin, and these are proved to be ‘‘rigid’’ in the thermodynamic
limit, in three dimensions and for sufficiently large values of p. This implies the
existence of non-translation-invariant (conditioned) random-cluster measures in
three dimensions. The results are valid in the special case q=1, thus indicating a
property of three-dimensional percolation not previously noted.
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1. INTRODUCTION

Dobrushin’s proof (1) of the existence of non-translation-invariant Gibbs
states for the three-dimensional Ising model was the starting point for the
study of interfaces in disordered spin systems. We show in the current
paper that such results are valid for all ferromagnetic random-cluster
models on Z3, including percolation. This generalization of Dobrushin’s
theorem is achieved by defining a family of conditioned measures, and by
showing the stiffness of the ensuing interface.

The random-cluster model has since its introduction (2–4) around 1970
provided a beautiful mechanism for the study of Ising and Potts models, as



well as being an object worthy of study in its own right. Many (but not all)
central results for ferromagnetic Ising/Potts systems are best proved in the
context of random-cluster models; the stochastic geometry of such models
may be exploited the better to understand the behaviour of correlations
in the original system. The spectrum of random-cluster models extends to
percolation (and beyond), and one sees thus that percolative techniques
have direct application to Ising and Potts models. The reader is referred to
ref. 5 for more information concerning the history of random-cluster
models, and to refs. 6–10 for examples of them in action.

The question addressed here concerns the stiffness of interfaces. In the
case of the Ising model, Dobrushin introduced the boundary condition on
the box L=[−L, L]3 having +1 on the upper half of the boundary and
−1 on its complement. He then studied the interface separating the two
regions behaving respectively as the +1 phase and the −1 phase. He
showed for sufficiently low temperatures that this interface deviates only
locally from the horizontal plane through the equator of the box. This
effect is seen in all dimensions of three or more, but not in two dimensions,
for which case the interface may be thought of as a line with Gaussian
fluctuations (see ref. 11–13).

This problem may be cast in the more general setting of the random-
cluster model on the box L subject to the following boundary condition
and to a certain conditioning. The vertices on the upper hemisphere of L

are wired together into a single composite vertex labelled L+. The vertices
on the complement of the upper hemisphere are wired into a single com-
posite vertex labelled L−. Let D be the event that no open path of L exists
joining L− to L+, and let fL be the random-cluster measure on L with edge-
parameter p and cluster-weighting factor q, with the above boundary con-
dition and conditioned on the event D. It is a geometrical fact that there
exists an interface separating two regions of L, each of which is in the
wired phase. It follows by the results of ref. 1 that, when q=2 and p is
sufficiently large, this interface deviates only locally from the horizontal
plane through the equator of L. The purpose of this paper is to prove that
this is so for all q \ 1 and all sufficiently large p. In doing so we shall work
directly with the random-cluster model. The geometry of the interfaces for
this model is notably different from that of a spin model since the configu-
rations are indexed by edges rather than by vertices, and this leads to some
new difficulties.

Extensions of our results to dimensions d satisfying d \ 4 are, to quote
from ref. 1, ‘‘obvious,’’ though the proofs may involve some extra compli-
cations. It is striking that our results are valid for high-density percolation
on Z3, being the case q=1. That is, conditional on the existence of a
surface (suitably defined) of dual plaquettes spanning the equator of L, this

2 Gielis and Grimmett



surface deviates only locally from the flat plane. A corresponding question
for supercritical percolation in two dimensions has been studied in depth in
ref. 14, where it is shown effectively that the (one-dimensional) interface
converges when re-scaled to a Brownian bridge.

We have spoken above of interfaces which ‘‘deviate only locally’’ from
a plane, and we shall make this expression more rigorous in Section 9,
where our principal Theorem 2 is presented. We include in Section 3 a
weaker version of Theorem 2 which does not make use of the notation
developed later in the work.

Our theorems are proved under the assumption that q \ 1 and p is
sufficiently large. It is a major open question to determine whether or not
such results are valid under the weaker assumption that p exceeds the cri-
tical value pc(q) of the random-cluster model with cluster-weighting factor
q (see ref. 15). The answer may be expected to depend on the value of q and
the number d of dimensions. Since the percolation measure (when q=1) is
a conditioned product measure, it may be possible as with other problems
to gain insight into the existence or not of a ‘‘roughening transition’’ by
concentrating on the special case of percolation. It is of interest that much
of the argument of this paper is valid also when q < 1 and p is sufficiently
large, but we shall not specify the details. Also, it may be possible to extend
some of the conclusions of this paper to measures with certain other
boundary conditions, such as that generated with free boundary conditions
and conditioned on D, but we shall not pursue this here.

As described above, the measures studied here are obtained by condi-
tioning on a certain event D. When p is large, D has probability of order
exp(−aL2) where a=a(p, q), and thus we are in the realm of the
large-deviation theory of the process. See refs. 8 and 16.

We introduce random-cluster measures in the next section, followed
by a summary of our main results in Section 3. Necessary properties of
random-cluster measures are developed in Section 4. Interfaces are defined
in Section 5, where we prove some geometrical lemmas of independent
interest which we believe will find applications elsewhere. In Section 6 we
study the probability of having a configuration that is compatible with a
given interface, under the appropriate conditioned measure. We present
in Section 7 a microscopic geometrical description of the random-cluster
interfaces using a terminology based on that introduced for the Ising model
in ref. 1. This is followed in Section 8 by an exponential bound for the
probability of finding local perturbations of a flat interface, and in Section 9
by the statement and proof of our main theorems.

The methods of this paper are inspired by those of ref. 1 subject to
some serious variations. Dobrushin (1) studied the Ising model, and his
arguments were later simplified in part by van Beijeren. (17) We have been
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unable to extend the methods of ref. 17, which may be special to the Ising
model. Related results may be found in refs. 18–22 and the references
therein. We have found the first of the latter references to be particularly
useful in the present work. It should be noted that, in order to study inter-
faces for spin systems rigorously, certain lemmas concerning their geometry
are required; see refs. 21 and 23 for example.

The Pirogov–Sinai theory of contours has enabled (refs. 23–25) a study
of Potts models and random-cluster models for large q, when p=pc(q), the
critical point. It seems now to be accepted that the random-cluster model is
especially well adapted to the study of contours and interfaces. However, it
appears that certain pivotal facts, implicit in earlier work, and concerning
the relationship between interfaces and random-cluster measures, have
never been proven. Specifically, certain key results in three dimensions
concerning the ‘‘external boundary’’ of a set of connected edges, and the
‘‘internal boundary’’ of a cavity of plaquettes of Z3, are missing from
the literature. These are akin to the well known fact, proved in ref. 26, that
the external boundary of a finite cluster of Z2 contains, in its dual repre-
sentation, a circuit separating the cluster from infinity. One of the targets
of the current paper is to state and prove the necessary geometrical facts;
see Propositions 5 and 6.

Since finishing this work, we have received the preprint, (27) which uses
Pirogov–Sinai theory to study the rigidity of interfaces for sufficiently large
q and with p equal to the critical point of the random-cluster model. It is
proved there that there is a rigid interface at a first-order transition for
large q, with the boundary condition a mixture of the wired and the free.

2. CONDITIONED RANDOM-CLUSTER MEASURES

Let Z3 be the set of all vectors x=(x1, x2, x3) of integers, termed
vertices, and let

|x−y|=C
3

i=1
|xi−yi |, ||x−y||=max{|xi−yi |: 1 [ i [ 3} for x, y ¥ R3.

We place an edge between vertices x and y if and only if |x−y|=1, and we
denote by L=(Z3, E) the resulting lattice. We write x ’ y if |x−y|=1, and
we write Ox, yP for the corresponding edge. We sometimes think of the
edge e=Ox, yP as the closed straight-line segment with endpoints x and y.
For E ı E, we write V(E) for the set of vertices in Z3 that belong to at least
one of the edges in E. We shall sometimes abuse notation by referring to
the graph (V(E), E) as the graph E. The L. distance between two edges
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e1, e2 is defined to be the distance between their centres, and is denoted
||e1, e2 ||.

A path in a subgraph G=(V, E) of L is an alternating set of distinct
vertices and bonds x=z0, Oz0, z1P, z1,..., Ozn−1, znP, zn=y using only edges
Ozi, zi+1P ¥ E. Such a path is said to connect x and y and to have length n.
The graph G is called connected if every pair of vertices is connected by
some path. A connected component of G is a maximal connected subgraph
of G. We shall occasionally speak of a set L ı Z3 of vertices as being
connected, by which we mean that L induces a connected subgraph of L.

For x ¥ Z3, we denote by yx: Z3Q Z3 the translate given by yx(y)=
x+y. The translate yx acts on edges and subgraphs of L in the natural way.
For sets A, B of edges or vertices of L, we write A 4 B if B=yxA for some
x ¥ Z3. Note that two edges e, f satisfy {e} 4 {f} if and only if they are
parallel (in which case we write e 4 f).

We write Sc for the complement of a set S. The upper and lower
boundaries of a set L of vertices are defined as

“
+L={x ¥ Lc : x3 > 0, x ’ z for some z ¥ L},

“
−L={x ¥ Lc : x3 [ 0, x ’ z for some z ¥ L},

and the boundary of L is denoted “L=“+L 2 “−L. For positive integers L,M
we define the box LL, M=[−L, L]2×[−M, M], and write EL, M for the
set of all edges having at least one endvertex in LL, M. [We abuse notation
here and later, and should write LL, M=([−L, L]2×[−M, M]) 5 Z3.]
We write QL=LL, L, the cube of side-length 2L, and LL=[−L, L]2×Z, an
infinite cylinder.

The configuration space of the random-cluster model on L is the set
W={0, 1}E, which we endow with the s-field F generated by the finite-
dimensional cylinders. A configuration w ¥ W assigns to each edge e the
value 0 or 1; we call the edge e open (in w) if w(e)=1, and closed other-
wise. A set of edges (for example, a path) is called open if all the edges
therein are open. For w ¥ W, we write xY y if there exists an open path
connecting the vertices x and y, and xY A if there exists y ¥ A such that
xY y. Each w ¥ W is in one–one correspondence with its set g(w)=
{e ¥ E: w(e)=1} of open edges. We write gx(w) for the set of edges in the
connected component of the graph (Z3, g(w)) containing the vertex x. The
configuration which assigns 1 (respectively 0) to every edge is denoted 1
(respectively 0).

Let E be a finite subset of E and let V=V(E), and suppose that 0 [
p [ 1 and q > 0. The usual way (see ref. 15) of defining a random-cluster
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measure with parameters p, q on the graph G=(V, E) with boundary
condition z ( ¥ W) is via the formula

fzG, p, q(w)=
1

ZzG, p, q
3D
e ¥ E
pw(e)(1−p)1−w(e)4 qkG(w)I{w(f)=z(f) if f ¨ E},

defined for all w ¥ W. Here, kG(w) is the number of connected components
in the graph (Z3, g(w)) having at least one vertex belonging to V,

ZzG, p, q= C
w ¥ W

3D
e ¥ E
pw(e)(1−p)1−w(e)4 qkG(w)I{w(f)=z(f) if f ¨ E} (1)

is the normalizing partition function, and I{H} is the indicator function
of the event H. We shall write k(w) for the total number of connected
components of (Z3, g(w)).

Fig. 1. The box LL, M. The heavy black edges are those given by the boundary condition m,
and there is a two-dimensional sketch of the interface D.
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We shall be particularly concerned with the case E=EL, M and with a
boundary condition m corresponding to the mixed ‘‘Dobrushin boundary’’
of ref. 1. To this end, we let m be given by

m(e)=˛0 if e=Ox, yP for some x=(x1, x2, 0) and y=(x1, x2, 1),
1 otherwise.

(2)

We let Wm
L, M be the set of all configurations w ¥ W such that w(f)=m(f)

if f ¨ EL, M. We define IL, M to be the event that there exists no open path
connecting a vertex of “+LL, M to a vertex of “−LL, M. Let f̄mLL, M, p, q denote
the measure fmG, p, q conditioned on the event IL, M. See Fig. 1.

The measure f̄mLL, M, p, q is only one of many such conditioned measures.
Let E be a finite subset of E, let V=V(E), and write G=(V, E) as usual.
In a more general formulation, we take some boundary condition z, and we
consider the set C(z) of open components of z in the graph obtained from
L by removing both E and all vertices adjacent to no edge in Ec. Let S be
some set of labels, let l: C(z)Q S, and call l(C) the label of C ¥ C. We now
consider the measure fzG, p, q conditioned on the event that no open path
exists joining two vertices lying in components of C(z) having different
labels, and we denote this new measure by f̄z, lG, p, q. The case above arises
when E=EL, M and z=m, (note that |C(m)|=2), and the two members of
C(m) have different labels.

3. SUMMARY OF MAIN RESULTS

We summarise our main results as follows. The complete form of our
main theorems appears with proofs in Section 9, using notation developed
in the course of the work.

Many of our calculations concern the box LL, M and the measure
f̄mLL, M, p, q. We choose however to express our conclusions in terms of the
infinite cylinder LL=LL,. and the weak limit f̄L, p, q=limMQ. f̄mLL, M, p, q,
which is shown in Lemma 8 to exist.

We show in Proposition 4 that, on the event IL, M 5 Wm
L, M, there exists

an ‘‘interface which spans the equator’’ of LL, M. (By the equator, we mean
the circuit of LL, M 0LL−1, M comprising all vertices x with x3=

1
2 .) Much of

this paper is devoted to understanding the geometry of such an interface.
We shall see in Theorem 2 that, in the limit as MQ. and for sufficiently
large p, this interface deviates, f̄L, p, q-almost surely, only locally from the
flat plane through the equator of LL. Indeed, the spatial density of such
deviations approaches zero as p approaches 1. As a concrete application we
present the following theorem, which we note to be a substantial weakening
of Theorem 2 in Section 9.
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Theorem 1. Let q \ 1. For all E > 0 there exists p̂=p̂(E) < 1 such
that, if p > p̂,

f̄L, p, q(xY “−LL) > 1− E, f̄L, p, q(x+(0, 0, 1)Y “+LL) > 1− E, (3)

for all L \ 1 and every x=(x1, x2, 0) ¥ LL.

We have no proof that the sequence {f̄L, p, q: L \ 1} converges weakly
as LQ., but, by the usual compactness argument, there must exist weak
limits of the sequence. It is a consequence of our main Theorem 2 that, for
sufficiently large p, any such weak limit is non-translation-invariant. By
making use of the relationship between random-cluster models and Potts
models (see refs. 5 and 6 and the references therein), one obtains thereby a
generalization of the theorem of Dobrushin (1) to include percolation and
Potts models. We return to this point in Section 9, where it is shown in
addition that there exists a geometric bound, uniform in L, on the tail of
the displacement of the interface from the flat plane.

It would be interesting to know more of the random field defined by
the locations where the interface coincides with the flat plane through the
equator. It might be asked whether this field dominates (stochastically)
a percolation process of some density r(p), where r(p)Q 1 as pQ 1. Alan
Stacey (personal communication) has pointed out that this does not
hold, since the ‘‘price’’ for a deviation from the flat plane over a region R
depends on the length of the boundary of R rather than on its area.

Our strategy is to follow the milestones of the paper of Dobrushin, (1)

the methods of which are widely understood. Although Dobrushin’s work
is a helpful indicator of the overall route to the results, a considerable
amount of extra work, involving new ideas, is necessary in the present
context. For example, the geometry of interfaces is different for the random-
cluster model from that for spin systems, and we shall furthermore require
probabilistic estimates which are intrinsic to the present setting.

4. PROPERTIES OF RANDOM-CLUSTER MEASURES

There follow some general lemmas concerning random-cluster mea-
sures. The first of these contains the comparison inequalities of Fortuin
and Kasteleyn. There is a partial order on W given by w1 [ w2 if and only if
w1(e) [ w2(e) for all e ¥ E. A function h: W Q R is called increasing if it
is increasing with respect to this partial order. Given two probability
measures P1, P2 on (W,F), we write P1 [ st P2 if > h dP1 [ > h dP2 for all
bounded measurable increasing functions h.
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Lemma 1. Let E be a finite subset of E, and G=(V, E) where
V=V(E). For any z ¥ W, we have that

fzG, pŒ, qŒ [st fzG, p, q if pŒ [ p, qŒ \ q, qŒ \ 1,

fzG, pŒ, qŒ \st fzG, p, q if
pŒ

qŒ(1−pŒ)
\

p
q(1−p)

, qŒ \ q, qŒ \ 1.
(4)

See refs. 6 and 15 for a proof of these standard inequalities. Our
second lemma is a formula for the partition function in terms of the edge
densities. For e ¥ E, we write Je for the event that e is open.

Lemma 2. Let E be a finite subset of E, and G=(V, E) where
V=V(E). For any z ¥ W, we have that

log ZzG, p, q=kG(z
1) log q+C

e ¥ E
gzG, p, q(e), (5)

where z1 is the configuration obtained from z by making every edge in E
open, and

gzG, p, q(e)=F
1

p

5r−fzG, r, q(Je)
r(1−r)
6 dr. (6)

Proof. We differentiate log ZzG, r, q with respect to r, as in ref. 15,
p. 1479, to obtain that

d
dr

log ZzG, r, q=C
e ¥ E

fzG, r, q(Je)−r
r(1−r)

.

This we integrate from p to 1, and note that log ZzG, 1, q=kG(z
1) log q. L

Let q \ 1. We have by Lemma 1 that fzG, rŒ, 1 [ st fzG, r, q [st fzG, r, 1 where
rŒ=r/(r+(1−r) q), and hence

r
r+(1−r) q

[ fzG, r, q(Je) [ r.

By substitution into (6),

0 [ gzG, p, q(e) [ F
1

p
(q−1) dr=(1−p)(q−1) for e ¥ E, (7)
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uniformly in the choice of E and z. The above inequalities are reversed if
q < 1.

We recall for the next lemma that Qn=Ln, n, and, for e ¥ E, we write
Qn(e)=e+Qn, the set of translates of the endvertices of e by vectors
in Ln, n.

Lemma 3. Let q \ 1. There exists pg=pg(q) < 1 and a constant
a > 0 such that the following holds. Let E1 and E2 be finite edge sets such
that e ¥ E1 5 E2, and let n \ 1 be such that E1 5 Qn(e)=E2 5 Qn(e). If
p > pg,

|g1G1, p, q(e)−g
1
G2, p, q(e)| [ e

−an,

where Gi=(V(Ei), Ei).

Proof. Let Le be the event that the endvertices of the edge e are
joined by an open path which does not use e itself. It is an elementary
argument, using Eq. (3.10) of ref. 15, that

r−f1G, r, q(Je)
r(1−r)

=
(q−1)(1−f1G, r, q(Le))

r+(1−r) q
,

whence

|g1G1, p, q(e)−g
1
G2, p, q(e)| [ F

1

p

(q−1)
r+(1−r) q

|f1G1, r, q(Le)−f1G2, r, q(Le)| dr. (8)

Fix n \ 1. We shall now follow an argument of ref. 15, pp. 1486–1487,
and ref. 28, pp. 138–152, of which we give some details next. Let L be
derived from L by adding edges between any pair x, y of vertices with
||x−y||=1. For w ¥ W, we call a vertex x white if w(e)=1 for all e incident
with x in L, and black otherwise. Let V be the set of vertices which are
incident in L to edges of both Qn(e) and its complement. We define B
as the union of V together with all vertices x0 ¥ Z3 for which there
exists a path x0, x1,..., xm of L such that x0, x1,..., xm−1 ¨ V, xm ¥ V, and
x0, x1,..., xm−1 are black. Let Kn be the event that there exists no x ¥ B such
that ||x−z|| [ 10, say, where z is the centre of e. Using (5.17)–(5.18) of
ref. 15, together with estimates at the beginning of the proof of Lemma
(2.24) of ref. 28, we find that

f0Qn(e), r, q(Kn) \ 1−c
n(1−p)en (9)

10 Gielis and Grimmett



where c and e are absolute positive constants, and p=r/(r+(1−r) q).
Since Kn is an increasing event, we deduce that

f1G1, r, q(Kn) \ 1−c
n(1−p)en. (10)

Let H=E1 5 Qn(e). It follows by the arguments of ref. 15, p. 1487, and by
coupling, that

0 [ f1H, r, q(Le)−f1G1, r, q(Le) [ 1−f1G1, r, q(Kn).

The claim then follows by (8), (10), and the triangle inequality. L

5. INTERFACES AND GEOMETRY

We shall have much recourse to the dual of the random-cluster model,
being a probability measure on the set of ‘‘plaquettes’’ of the dual lattice Ld
obtained by shifting the vertices and edges of L through the vector (12 ,

1
2 ,
1
2)

(see refs. 29 and 30). A plaquette of Ld is a (topologically) closed unit
square of R3 with corners lying in Z3+(12 ,

1
2 ,
1
2). We denote by H the set of

all plaquettes of Ld. The straight line segment joining the vertices of an
edge Ox, yP passes through the middle of exactly one plaquette, denoted
h(Ox, yP), which we call the dual plaquette of Ox, yP. We declare this
plaquette open (respectively closed) if Ox, yP is closed (respectively open).
The plaquette h(Ox, yP) is called horizontal if y=x+(0, 0, ±1), and
vertical otherwise.

Two distinct plaquettes h1 and h2 are called 0-connected, written
h1 ’

0 h2 if h1 5 h2 ]”. They are said to be 1-connected, written h1 ’
1 h2, if

h1 5 h2 is homeomorphic to the unit interval [0, 1]. A set of plaquettes is
called 0-connected (respectively 1-connected) if they are connected when
viewed as the vertex-set of a graph with adjacency relation ’

0 (respectively ’
1 ).

The L. distance between two plaquettes h1, h2 is defined to be the distance
between their centres, and is denoted ||h1, h2 ||. For any set H of plaquettes,
we write E(H) for the set of edges of L to which they are dual.

We define the regular interface as the set d0 given by

d0={h ¥H : h=h(Ox, yP) for some x=(x1, x2, 0) and y=(x1, x2, 1)}.

The interface D(w) of a configuration w ¥IL, M 5 Wm
L, M is defined to be the

maximal 1-connected set of open plaquettes containing the plaquettes of
d0 0{h(e): e ¥ EL, M}. The set of all interfaces is

DL, M={D(w): w ¥IL, M 5 Wm
L, M}. (11)

Rigidity of the Interface for Percolation 11



While it is tempting to think of an interface as part of a deformed plane, it
may in fact have a much more complex geometry involving cavities and
attachments. The following proposition, which will be proved later in this
section, confirms that the interfaces in DL, M separate the top of LL, M from
its bottom.

Proposition 4. The event IL, M 5 Wm
L, M is the set of all configura-

tions w ¥ Wm
L, M for which there exists d ¥DL, M such that w(e)=0 whenever

h(e) ¥ d.

For d ¥DL, M, we define its extended interface d̄ to be the set

d̄=d 2 {h ¥H : h is 1-connected to some member of d}. (12)

It will be useful to introduce the ‘‘maximal’’ (w̄d) and ‘‘minimal’’ (w
¯
d)

configurations in Wm
L, M which are compatible with d:

w̄d(e)=˛
0 if e ¥ d,
1 otherwise,

w
¯
d(e)=˛

m(e) if e ¨ EL, M,
1 if e ¥ EL, M 5 (d̄0d),
0 otherwise.

(13)

In Section 6, we shall consider interfaces spanning the equator of the
infinite cylinder LL.

We consider next some geometrical matters. The words ‘‘connected’’
and ‘‘component’’ should be interpreted for the moment in the topological
sense. Let T ı R3, and write T for the closure of T in R3. We define the
inside ins(T) of T to be the union of all the bounded connected compo-
nents of R30T; the outside out(T) is the union of all the unbounded con-
nected components of R30T. The set T is said to separate R3 if R30T has
more than one connected component. For a set H ıH of plaquettes, we
define the set [H] ı R3 by [H]={x ¥ R3 : x ¥ h for some h ¥H}. We call
a finite set H of plaquettes a splitting set if [H] is 1-connected in R3 and
R30[H] contains at least one bounded connected component.

The following two propositions are in a sense dual to one another, and
we believe they will find applications elsewhere. The first is an analogue in
three dimensions of Proposition 2.1 of the Appendix of ref. 26, where two-
dimensional mosaics are considered. Related results may be found in
refs. 16, 30, and 31.

Proposition 5. Let G=(V, E) be a finite connected subgraph of L.
There exists a splitting set Q of plaquettes such that:
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(i) V ı ins([Q]),

(ii) every plaquette in Q is dual to some edge of E having exactly one
endvertex in V,

(iii) if W is a connected set of vertices such that V 5W=”, and
there exists an infinite path on L starting in W which uses no vertices in V,
thenW ı out([Q]).

Let d={h(e): e ¥ D} be a 1-connected set of plaquettes, and let d̄ be
given as in (12). Consider the graph (Z3, E0D), and let C be a connected
component of this graph. Let DvC be the set of all vertices v in C for which
there exists w ¥ Z3 with h(Ov, wP) ¥ d̄, and let DeC be the set of edges f of C
for which h(f) ¥ d̄0d. Note that edges in DeC have both endvertices
belonging to DvC.

Proposition 6. For any finite connected component C of the graph
(Z3, E0D), the graph (DvC, DeC) is connected.

We shall apply this proposition in the following way. Let d ¥DL, M.
Consider the connected components of the graph (Z3, g(w̄d)), and denote
these components as (S id, U

i
d), i=1, 2,..., Kd, where Kd=k(w̄d). Note that

U id is empty whenever S id is a singleton. We define W(d) as the set of edges
in EL, M 0{e ¥ E : h(e) ¥ d̄}.

Let w ¥IL, M 5 Wm
L, M be such that D(w)=d. It must be the case that

w(e)=˛0 if h(e) ¥ d,
1 if h(e) ¥ d̄0d.

(14)

Let D be the set of edges having both endvertices in LL+2, M+2 which either
are dual to plaquettes in d or join a vertex of LL+1, M+1 to a vertex of
“LL+1, M+1. We apply Proposition 6 to the set D, and deduce that the
number of components in the graph (Z3, g(w)) having a vertex in V(d̄) is
simply Kd. We shall make use of this observation in the next section when
we consider conditioning on events of the form {D(w)=d}.

Proof of Proposition 5. This may be proved by extending the proof
of Lemma 7.2 of ref. 30. Instead, we present a variant of that proof.
Consider the set of edges with exactly one endvertex in V and let P be the
corresponding set of plaquettes.

Let x ¥ V. We first show that x ¥ ins([P]). Let U be the set of all
closed unit cubes of R3 having centres in V. Since all relevant sets in this
proof are simplicial, the notions of path-connectedness and arc-connec-
tedness coincide. We recall that an unbounded path of R3 from x is defined
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to be a continuous mapping c: [0,.)Q R3 with c(0)=x whose image is
unbounded. Any such path c satisfying |c(t)|Q. as tQ. has a final
point z(c) belonging to the (closed) union of all cubes in U. Now z(c) ¥
[P] for all such c, and therefore x ¥ ins([P]).

Let P1, P2,..., Pn be the partition of P such that the sets [P1],
[P2],..., [Pn] are the 1-connected components of [P] in R3. Note that
[Pi] 5 [Pj] is a finite (or empty) set for i ] j. We show next that there
exists i such that x ¥ ins([Pi]). Suppose for the sake of contradiction that
this is false, which is to say that x ¨ ins([Pi]) for all i. Then x ¨ P̄i=
[Pi] 2 ins([Pi]) for i=1, 2,..., n. Note that each P̄i is a closed set which
does not separate R3.

Let i ] j. We claim that: either P̄i 5 P̄j is a finite set, or one of the sets
P̄i, P̄j is a subset of the other. To see this, suppose that P̄i 5 P̄j is an infi-
nite set. Suppose further that P̄i 5 [Pj] is infinite. Since [Pj] is a union of
unit squares and P̄i is a union of unit squares and cubes, all with corners in
Z3+(12 ,

1
2 ,
1
2), there exists some edge f of Ld such that f ı P̄i 5 [Pj]. We

cannot have f ı [Pi] since [Pi] 5 [Pj] is finite, whence fo ı ins([Pi]),
where fo denotes the open straight-line segment of R3 joining the endver-
tices of f. Now [Pj] is 1-connected and [Pi] 5 [Pj] is finite, so that [Pj]
is contained in the closure of ins([Pi]), implying that [Pj] ı P̄i and
therefore P̄j ı P̄i.

Suppose next that P̄i 5 [Pj] is finite but P̄i 5 ins([Pj]) is infinite.
Since [Pi] is 1-connected, it has by definition no finite cutset. Since
[Pi] 5 [Pj] is finite, either [Pi] ı P̄j or [Pi] is contained in the closure of
the unbounded component of R30[Pj]. The latter cannot hold since
P̄i 5 ins([Pj]) is infinite, whence [Pi] ı P̄j and therefore P̄i ı P̄j.

It follows that we may write R=1n
i=1 P̄i as the union of a collection

of closed bounded sets P̃i, i=1, 2,..., k where k [ n, that do not separate
R3 and such that P̃i 5 P̃j is finite for i ] j. We shall now use Theorem 11 of
ref. 32 (§59, Section II) which, for clarity of exposition, we state in the
language of the original: If none of the closed sets F0 and F1 cuts Sn

between the points p and q and if dim(F0 5 F1) [ n−3, their union F0 2 F1
does it neither. [Here, Sn is the n-sphere, and we shall apply this with
n=3.] It follows by this theorem that R does not separate R3. Now x ¨ R,
whence x lies in the unique component of the complement R30R, in con-
tradiction of the assumption that x ¥ ins([P]). We deduce that there exists
k such that x ¥ ins([Pk]), and we define Q=Pk.

Consider now a vertex y ¥ V. Since G=(V, E) is connected, there
exists a path in L that connects x with y using only vertices in V. Whenever
u and v are two consecutive vertices on this path, h(Ou, vP) does not belong
to P. It follows that y lies in the inside of [Q]. Claims (i) and (ii) are now
proved with Q as given, and it remains to prove (iii).
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Let W be as in (iii), and let w ¥W. There exists a path on L from w to
infinity using no vertices of V. Whenever u and v are two consecutive ver-
tices on such a path, the plaquette h(Ou, vP) does not lie in P. It follows
that w ¥ out([P]), and therefore w ¥ out([Q]). L

Proof of Proposition 6. Let H=(DvC, DeC), and let Hx be the
connected component of H containing the vertex x. We claim that there
exists a plaquette hx=h(Oy, zP) ¥ d such that y ¥Hx. This may be shown
as follows.

The claim holds with y=x and hx=h(Ox, zP) if x has a neighbour z
with h(Ox, zP) ¥ d. Assume therefore that x has no such neighbour z. There
exists a neighbour u of x with h(Ox, uP) ¥ d̄0d. By a consideration of the
various possibilities, there exists h̃ ¥ d such that h̃ ’1 h(Ox, uP), and

either (i) h̃=h(Ou, zP) for some z,

or (ii) h̃=h(Ov, zP) for some v ’ x, z ’ u.

If (i) holds we take y=u, hx=h̃, and if (ii) holds we take y=v ( ¥Hx),
hx=h̃.

We apply Proposition 5 with G=Hx to obtain a splitting set Qx, and
we claim that

Qx 5 d ]”. (15)

This we prove as follows. If hx ¥ Qx, the claim is immediate. Suppose then
that hx ¨ Qx, so that [hx] 5 ins([Qx]) ]”, implying that d intersects both
ins([Qx]) and out([Qx]). Since d and Qx are 1-connected sets of plaquet-
tes, it follows that d 2 Qx is 1-connected. Therefore there exist hŒ ¥ d,
hœ ¥ Qx such that hŒ ’1 hœ. If hœ ¥ d, then (15) holds, so we may assume that
hœ ¨ d, and hence hœ ¥ d̄0d. Then hœ=h(Ou, vP) where u ¥Hx, and there-
fore v ¥Hx, a contradiction. We conclude that (15) holds.

We claim that (15) implies Qx ı d. Suppose on the contrary that
Qx ł d, so that there exist hŒ ¥ d, hœ ¥ Qx 0d such that hŒ ’1 hœ. This leads to
a contradiction by the argument just given, whence Qx ı d.

Suppose now that x and y are vertices of H such that Hx and Hy are
distinct connected components. Then either Hx lies in out([Qy]), or Hy lies
in out([Qx]). Since Qx, Qy ı d, either possibility contradicts the assump-
tion that x and y are connected in C. Therefore Hx=Hy as claimed. L

Proof of Proposition 4. If w ¥IL, M 5 Wm
L, M, then by definition

w(e)=0 whenever h(e) ¥ D(w). Suppose conversely that d ¥DL, M, and let
w ¥ Wm

L, M satisfy w(e)=0 whenever h(e) ¥ d. Since w [ w̄d, it suffices to
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show that w̄d ¥IL, M. Since d ¥DL, M, there exists t ¥IL, M 5 Wm
L, M such

that d=D(t). Note that t [ w̄d. Suppose for the sake of a contradiction
that w̄d ¨IL, M, and think of w̄d as being obtained from t by declaring a
certain sequence e1, e2,..., er with t(ei)=0 for 1 [ i [ r, in turn, to be open.
Let tk be obtained from t by g(tk)=g(t) 2 {e1, e2,..., ek}. By assumption,
there exists K such that tK ¥IL, M but tK+1 ¨IL, M. For k ¥ Wm

L, M, let J(k)
denote the set of all edges e having endvertices in LL, M, with k(e)=1, and
both of whose endvertices are attainable from “+LL, M by open paths of k.
We apply Proposition 5 to the finite connected graph induced by J(tK) to
find that there exists a splitting set Q of plaquettes such that: “+LL, M
ı ins([Q]), “−LL, M ı out([Q]), and tK(e)=0 whenever e ¥ EL, M and
h(e) ¥ Q. It must be the case that h(eK+1) ¥ Q, since tK+1 ¨IL, M. By the
1-connectedness of Q, there exists a sequence f1=eK+1, f2, f3,..., ft of
edges such that:

(i) h(fi) ¥ Q for all i,

(ii) fi ¥ EL, M for 1 [ i < t, ft=h(Ox, x−(0, 0, 1)P) for some x=
(x1, x2, 1) ¥ “+LL, M,

(iii) h(fi) ’
1 h(fi+1) for 1 [ i < t.

It follows that h(fi) ¥ d for 1 [ i [ t. In particular, h(eK+1) ¥ d and so
w̄d(eK+1)=0, a contradiction. Therefore w̄d ¥IL, M as claimed. L

6. PROBABILITY DISTRIBUTION OF THE INTERFACE

For conciseness of notation, we shall henceforth abbreviate fmLL, M, p, q to
fL, M, and f̄mLL, M, p, q to f̄L, M. Let d ¥DL, M. We derive next an expression for
the probability fL, M(D=d), which we abbreviate to fL, M(d).

Let Kd be the number of components of the graph (Z3, g(w̄d)), and
recall from the discussion after Proposition 6 that, if w ¥IL, M 5 Wm

L, M and
D(w)=d, then w has exactly Kd open components intersecting V(d̄). We
have that

fL, M(d)=
1

Z(EL, M)
p |d̄0d|(1−p) |d| C

w ¥ W
m
L, M :

D(w)=d

3 D
e ¥W(d)

pw(e)(1−p)1−w(e)4 qk(w)

=
Z1(d)
Z(EL, M)

p |d̄0d|(1−p) |d| qKd−1, (16)

whereZ(EL, M)=Z
m
LL, M, p, q andZ1(d)=Z1W(d), p, q as in (1). [As before,W(d)=

EL, M 0{e ¥ E : h(e) ¥ d̄}.] In this expression and later, for H ıH, |H|
denotes the number of plaquettes in the set H 5 {h(e) : e ¥ EL, M}. The term
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qKd−1 arises since the application of ‘‘1’’ boundary conditions to d has the
effect of uniting the boundaries of the cavities of d, whereby the number of
clusters diminishes by Kd−1.

We next exploit properties of the partition functions Z( · ) in order to
rewrite (16). For i=1, 2, let Li > 0, Mi > 0, di ¥DLi, Mi , and ei ¥ E(di) 5
ELi, Mi , and let

G(e1, d1, EL1, M1 ; e2, d2, EL2, M2 )

=sup{L: QL(e1) 5 EL1, M1 4 QL(e2) 5 EL2, M2

and QL(e1) 5 E(d1) 4 QL(e2) 5 E(d2)},

where QL(e)=e+QL as before. We write Z1(EL, M)=Z
1
LL, M, p, q.

Proposition 7. Let L, M \ 1 and d ¥DL, M. We may write fL, M(d)
in the form

fL, M(d)=
Z1(EL, M)
Z(EL, M)

p |d̄0d|(1−p) |d| qKd−1 exp 1 C
e ¥ E(d) 5 EL, M

fp(e, d, L, M)2 ,
(17)

for functions fp(e, d, L, M) with the following properties. For q \ 1 there
exist pg < 1 and constants C1, C2, c > 0 such that, if p > pg,

|fp(e, d, L, M)| < C1, (18)

|fp(e1, d1, L1, M1)−fp(e2, d2, L2, M2)| [ C2e−cG, e1 ¥ d1, e2 ¥ d2, e1 4 e2,
(19)

where G=G(e1, d1, EL1, M1 ; e2, d2, EL2, M2 ). Inequalities (18) and (19) are
valid for all relevant values of their arguments.

Proof. We have by Lemma 2 that

log 1 Z
1(d)

Z1(EL, M)
2= C

f ¥W(d)
[g(f, W(d))−g(f, EL, M)]− C

f ¥ E(d̄)
g(f, EL, M),

(20)

where g(f, D)=g1D, p, q(f). The summations may be expressed as sums
over edges e lying in E(d) in the following way. The edges in E may
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be ordered according to the lexicographic ordering of their centres. Let
f ¥ EL, M and d ¥DL, M. Amongst all edges in E(d) 5 EL, M which are closest
to f (in the sense that their centres are closest in L. norm), we write
n(f, d) for the earliest edge in this ordering. We have by (20) that

log 1 Z
1(d)

Z1(EL, M)
2= C

e ¥ E(d) 5 EL, M
fp(e, d, L, M) (21)

where

fp(e, d, L, M)= C
f ¥W(d):
n(f, d)=e

[g(f, W(d))−g(f, EL, M)]− C
f ¥ E(d̄):
n(f, d)=e

g(f, EL, M).
(22)

This establishes (17) via (16).
It remains to show the required properties of the fp. Suppose e=

n(f, d) and set r=||e, f||. Then Qr−2, r−2(f) does not intersect d̄, implying
by Lemma 3 that

|g(f, W(d))−g(f, EL, M)| [ e−a ||e, f||+2a if p > pg, (23)

where pg and a are given as in that lemma. Secondly, there exists an
absolute constant K such that, for all e and d, the number of edges
f ¥ E(d̄) with e=n(f, d) is no greater than K. Therefore, by (7),

|fp(e, d, L, M)| [ C
f ¥ E

e−a ||e, f||+2a+K(1−p)(q−1)

as required for (18).
Finally we show (19) for p > pg and appropriate C2, c. Let e ¥ d1,

e2 ¥ d2, and let G be given as in the proposition; we may suppose that
G > 9. By assumption, e1 4 e2, whence there exists a translate y of L such
that ye1=e2. We have for f ¥W(d1) 5 QG/3(e1) that

y[QG/3(f) 5 EL1, M1]=QG/3(yf) 5 EL2, M2 , (24)

y[QG/3(f) 5 d1]=QG/3(yf) 5 d2, (25)

and that

for ||f, e1 || [
1
3 G, n(f, d1)=e1 if and only if n(yf, d2)=e2. (26)
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It follows from the definition (22) of the functions fp that

|fp(e1, d1, L1, M1)−fp(e2, d2, L2, M2)|

[ C
f ¥W(d1) 5 QG/3(e1):

n(f, d1)=e1

{|g(f, W(d1))−g(yf, W(d2))|

+|g(f, EL1, M1 )−g(yf, EL2, M2 )|}

+ C
f ¥W(d1)0QG/3(e1):
n(f, d1)=e1

|g(f, W(d1))−g(f, EL1, M1 )|

+ C
f ¥W(d2)0QG/3(e2):
n(f, d2)=e2

|g(f, W(d2))−g(f, EL2, M2 )|+S, (27)

where

S=: C
f ¥ E(d̄1):
n(f, d1)=e1

g(f, EL1, M1 )− C
f ¥ E(d̄2):
n(f, d2)=e2

g(f, EL2, M2 ) : .

By (24), (25), and Lemma 3, the first summation in (27) is bounded
above by 2G3e−

1
3 aG. Using the definition of the n(f, di), the second and

third summations of (27) are bounded above, respectively, by

C
f ¨ QG/3(ei)

e−a ||f, ei||+2a [ CŒe−
1
3 aG+2a,

for some CŒ <., as in (23). We have by (26) that

S=: C
f ¥ E(d̄1):
n(f, d1)=e1

g(f, EL1, M1 )−g(yf, EL2, M2 ) : [Ke−
1
3 aG,

and inequality (19) is proved for an appropriate choice of c. L

In the next part of this section, we consider measures and interfaces
for the infinite cylinder LL=LL,.=[−L, L]2×Z. We note first that, if
q \ 1, then fL, M+1 [ stfL, M, as in ref. 10, Theorem 3.1(a), whence the
(decreasing) weak limit

fL= lim
MQ.

fL, M (28)
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exists. We write Wm
L for the set of all configurations w such that w(e)=m(e)

for e ¨ EL=limMQ. EL, M, and IL for the event that no vertex of “L+L is
joined by an open path to a vertex of “L−L . The set of interfaces on which
we concentrate is DL=1M DL, M=limMQ. DL, M. Thus DL is the set of
interfaces which span LL, and every member of DL is bounded in the
direction of the third coordinate. It is easy to see that IL ` limMQ. IL, M,
and it is a consequence of the next lemma that the difference between these
two events has fL-probability zero.

Lemma 8. We have, if q \ 1, that fL, M( · |IL, M)S fL( · |IL) as
MQ., and that

fL(IL 0 lim
MQ.

IL, M)=0.

For Li > 0, di ¥DLi , and ei ¥ E(di) 5 ELi , let

G(e1, d1, EL1 ; e2, d2, EL2 )=sup{L: QL(e1) 5 EL1 4 QL(e2) 5 EL2
and QL(e1) 5 E(d1) 4 QL(e2) 5 E(d2)}.

On the event IL, D is defined as before to be the maximal 1-connected set
of open plaquettes which intersects d0 0EL.

Lemma 9. (a) Suppose L > 0, d ¥DL, and e ¥ E(d) 5 EL. The
functions fp given in (22) are such that the limit

fp(e, d, L)= lim
MQ.

fp(e, d, L, M) (29)

exists. Furthermore, if p > pg,

|fp(e, d, L)| < C1, (30)

and, for Li > 0, di ¥DLi , and ei ¥ E(di) 5 ELi satisfying e1 4 e2,

|fp(e1, d1, L1)−fp(e2, d2, L2)| [ C2e−cG,

where pg, C1, C2, c are given as in Proposition 7 and G=G(e1, d1,
EL1 ; e2, d2, EL2 ).

(b) For q \ 1 and d ¥DL, the probability fL(d |IL)=fL(D=d |IL)
is given by

fL(d |IL)=
1
ZL
p |d̄0d|(1−p) |d| qKd exp 1 C

e ¥ E(d) 5 EL
fp(e, d, L)2 , (31)

where ZL is the appropriate normalizing constant.
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Proof of Lemma 8. It suffices for the claim of weak convergence
that

fL, M(F 5IL, M)Q fL(F 5IL) for all cylinder events F. (32)

Let AL, M=[−L, L]2×{−M} and BL, M=[−L, L]2×{M}, and let TL, M
be the event that no open path exists between a vertex of “L+L, M 0BL, M and
a vertex of “L−L, M 0AL, M. Note that TL, M QIL as MQ.. Let F be a
cylinder event. Then

fL, M(F 5IL, M) [ fL, M(F 5 TL, MŒ) for MŒ [M

Q fL(F 5 TL, MŒ) as MQ.

Q fL(F 5IL) as MŒQ.. (33)

In order to obtain a corresponding lower bound, we introduce the
event Kr that all edges of EL, both of whose endvertices have third coor-
dinate equal to ±r, are open. We may suppose without loss of generality
that p > 0. We have by Lemma 1 that fL, M dominates product measure
with density p=p/{p+(1−p) q}, whence there exists b=bL < 1 such that

fL, M(Kr for some r [ R) \ 1−bR for R <M.

Now IL, M ı TL, M, and TL, M 0IL, M ı4M−1
r=1 K

c
r , whence

fL, M(F 5IL, M) \ fL, M(F 5 TL, M)−bM−1

\ fL, M(F 5IL)−bM−1

Q fL(F 5IL) as MQ.. (34)

Equation (32) follows from (33) and (34). The second claim of the lemma
follows by taking F=W, the entire sample space. L

Proof of Lemma 9. (a) The existence of the limit follows from the
monotonicity of g(f, Di) for an increasing sequence {Di}, and the proof
of (18). The inequalities are implied by (18) and (19).

(b) Let d ¥DL, so that d ¥IL, M for all large M. By Lemma 8,
fL(d |IL)=limMQ. fL, M(d |IL, M). We take the limit as MQ. in (17),
and use part (a) to obtain the claim. L

7. GEOMETRY OF INTERFACES

Next, we describe in more detail the interfaces in DL=limMQ. DL, M.
While it was natural in Section 5 to introduce the extended interface d̄ of

Rigidity of the Interface for Percolation 21



a member d of DL, it turns out to be useful when studying its geometry to
introduce its semi-extended interface

dg=d 2 {h ¥H : h is a horizontal plaquette that is 1-connected to d}.

Let x=(x1, x2, x3) ¥ Z3. The projection p(h) of a horizontal plaquette h=
h(Ox, x+(0, 0, 1)P) onto the regular interface d0 is defined to be the
plaquette p(h)=h(O(x1, x2, 0), (x1, x2, 1)P) ¥ d0. The projection of the ver-
tical plaquetteh=h(Ox, x+(1, 0, 0)P) is the interval p(h)=[(x1+

1
2 , x2−

1
2 ,
1
2),

(x1+
1
2 , x2+

1
2 ,

1
2)]. Similarly, h=h(Ox, x+(0, 1, 0)P) has projection

p(h)=[(x1−
1
2 , x2+

1
2 ,
1
2), (x1+

1
2 , x2+

1
2 ,
1
2)].

Let d ¥DL. A horizontal plaquette h of the semi-extended interface dg

is called a c-plaquette if h is the unique member of dg having projection
p(h). All other plaquettes of dg are called w-plaquettes. A ceiling of d is a
maximal 0-connected set of c-plaquettes. The projection of a ceiling C is the
set p(C)={p(h) : h ¥ C}. Similarly, we define a wall W of d as a maximal
0-connected set of w-plaquettes, and its projection as

p(W)={p(h) : h is a horizontal plaquette ofW}.

We collect together some properties of interfaces thus.

Lemma 10. Let d ¥DL.

(i) The set dg0d contains no c-plaquette.

(ii) All plaquettes of dg that are 1-connected to some c-plaquette are
horizontal plaquettes of d. All horizontal plaquettes that are 0-connected
to some c-plaquette belong to dg.

(iii) Let C be a ceiling. There is a unique plane parallel to the
regular interface which contains all the c-plaquettes of C.

(iv) Let C be a ceiling. We have that {h ¥ dg : p(h) ı [p(C)]}=C.

(v) LetW be a wall. We have that {h ¥ dg : p(h) ı [p(W)]}=W.

(vi) For each wall W, d0 0p(W) has exactly one maximal infinite
0-connected component (respectively, 1-connected component).

(vii) Let W be a wall, and suppose that d0 0p(W) comprises n max-
imal 0-connected sets H1, H2,..., Hn. The set of all plaquettes h ¥ dg0W
which are 0-connected to W comprises only c-plaquettes, which belong to
the union of exactly n distinct ceilings C1, C2..., Cn such that {p(h) : h is a
c-plaquette of Ci} ıHi.
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(viii) The projections p(W1) and p(W2) of two different walls W1
andW2 of dg are not 0-connected.

(ix) The projection p(W) of any wall W contains at least one
plaquette of d0.

The displacement of the plane in (iii) from the regular interface,
counted positive or negative, is called the height of the ceiling C.

Proof. (i) Let h be a c-plaquette of dg with p(h)=h0. Since d ¥DL, it
contains at least one plaquette with projection h0. Yet, according to the
definition of a c-plaquette, there is no such a plaquette besides h. Therefore
h ¥ d.

(ii) Suppose h is a c-plaquette. Necessarily, h belongs to d and any
horizontal plaquette which is 1-connected to h belongs to dg. It may be seen
in addition that any vertical plaquette which is 1-connected to h lies in d̄0d.
Suppose, on the contrary, that one such vertical plaquette hŒ lies in d. Then
the horizontal plaquettes which are 1-connected to hŒ lie in dg. One of these
latter plaquettes has projection p(h), in contradiction of the assumption
that h is a c-plaquette.

We may now see as follows that any horizontal plaquette hœ which is
1-connected to h must lie in d. Suppose, on the contrary, that one such
plaquette hœ lies in d̄0d. We may construct a path of open edges on
(Z3, g(w

¯
d)) that connects the vertex x just above h with the vertex

x−(0, 0, 1) just below h, using the open edges of w
¯
d corresponding to the

three relevant plaquettes of d̄0d. This contradicts the assumption that h is
a c-plaquette of the interface d.

The second claim of (ii) follows immediately, by the definition of dg.

(iii) The first part follows by the definition of ceiling, since the only
horizontal plaquettes that are 0-connected with a given c-plaquette h lie in
the plane containing h.

(iv) Assume that h ¥ dg and p(h) ı [p(C)]. If h is horizontal, the
conclusion holds by the definition of c-plaquette. If h is vertical, then h ¥ d,
and all 1-connected horizontal plaquettes lie in dg. At least two such
horizontal plaquettes project onto the same plaquette in p(C), in contra-
diction of the assumption that C is a ceiling.

(v) Let C be a ceiling and let c1, c2,..., cn be the maximal
0-connected sets of plaquettes of d0 0p(C). Let dg

i={h ¥ dg : p(h) ı [ci]},
and let bg

i={h ¥ dg
i : h horizontal, h ’0 hŒ for some hŒ ¥ C}. We note that,

by the geometry of Z2, bg
i is a 0-connected subset of dg

i . [This is a conse-
quence of statement (5.3) of ref. 33, see also footnote 2 on p. 40 of ref. 34.]
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We have by part (iv) that dg=C 2 (1n
i=1 dg

i ). We claim that each dg
i

is 0-connected, and we prove this as follows. Let h1, h2 ¥ dg
i . Since dg is

0-connected, it contains a sequence h1=f0, f1,..., fm=h2 of plaquettes
such that fi−1 ’

0 fi for 1 [ i [ m. We need to show that such a sequence
exists containing no plaquettes in C. Suppose on the contrary that the
sequence (fi) has a non-empty intersection with C. Let k=min{i : fi ¥ C}
and l=max{i : fi ¥ C}, and note that 0 < k [ l < n.

If fk−1 and fl+1 are horizontal, then fk−1, fl+1 ¥ bg
i , whence they are

0-connected by a path of horizontal plaquettes of bg
i , and the claim

follows. A similar argument is valid if either or both of fk−1 and fl+1 is
vertical. For example, if fk−1 is vertical, by (ii) it cannot be 1-connected to
a plaquette of C. Hence it is 1-connected to some horizontal plaquette in
dg0C which is itself 1-connected to a plaquette of C. The same conclusion
is valid for fl+1 if vertical. In any such case, as above there exists a
0-connected sequence of w-plaquettes connecting fk−1 with fl+1, and the
claim follows.

To prove (v), we note by the above that the wall W is a subset of one
of the sets dg

i , say dg
1 . Next we let C1 be a ceiling contained in dg

1 , if this
exists, and we repeat the above procedure. We consider the 0-connected
components of c1 0p(C1), and we use the fact that dg

1 is 0-connected to
deduce that the set of plaquettes which project onto one of these
components is itself 0-connected.

This procedure is repeated until all ceilings have been removed, the
result being a 0-connected set of w-plaquettes of which, by definition of a
wall, all members belong toW.

Finally, (vi) is a simple observation since walls are finite. Claim (vii) is
immediate from claim (ii) and the definitions of wall and ceiling. Claim
(viii) follows from (v) and (vii), and (ix) is a consequence of the definition
of the semi-extended interface dg. L

The properties described in Lemma 10 allow us to describe a wallW in
more detail. By (vi) and (vii), there exists a unique ceiling that is
0-connected to W and with projection in the infinite 0-connected compo-
nent of d0 0p(W). We call this ceiling the base of W. The altitude of W is
the height of the base of W; see (iii). The height D(W) of W is the
maximum absolute value of the displacement in the third coordinate direc-
tion of [W] from the horizontal plane {(x1, x2, s+

1
2) : x1, x2 ¥ Z}, where s

is the altitude of W. The interior int(W) (of the projection p(W)) of W is
the complement in d0 of the unique maximal infinite 0-connected compo-
nent of d0 0p(W) (cf. (vi)).

We next define the concept of a standard wall. Let S=(A, B) where
A, B are sets of plaquettes. We call S a standard wall if there exists d ¥DL
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such that A ı d, B ı dg0d, and A 2 B is the unique wall of d. If S=(A, B)
is a standard wall, we shall refer to plaquettes of either A or B as plaquettes
of S, and we write p(S)=p(A 2 B).

Lemma 11. Let S=(A, B) be a standard wall. There exists a unique
d ¥DL such that: A ı d, B ı dg0d, and A 2 B is the unique wall of d.

This will be proved soon. We denote by dS the unique such d ¥DL
corresponding to the standard wall S. We shall see that standard walls are
the basic building blocks for a general interface. Notice that the base of a
standard wall is a subset of the regular interface. We introduce an ordering
on the plaquettes of d0, and we define the origin of the standard wall S to
be the earliest plaquette in p(S) which is 1-connected to some plaquette of
d0 0p(S). Such an origin exists by Lemma 10(ix), and the origin belongs to
S by (ii). For h ¥ d0, we denote by Sh the set of all standard walls with
origin h. We attach to Sh the empty wall Eh interpreted as a wall with
origin h but containing no plaquettes.

A family {Si=(Ai, Bi) : 1 [ i [ m} of standard walls is called admis-
sible if:

(i) for i ] j, there exists no pair h1 ¥ p(Si) and h2 ¥ p(Sj) such that
h1 ’

0 h2,

(ii) if, for some i, h(e) ¥ Si where e ¨ EL, then h(e) ¥ Ai if and only if
m(e)=0.

The members of any such family have distinct origins. For our future con-
venience we label each Si according to its origin h(i), and write {Sh: h ¥ d0}
for the family, where Sh is to be interpreted as Eh when h is the origin of
none of the Si. We adopt the convention that, when a standard wall is
denoted as Sh for some h ¥ d0, then Sh ¥Sh.

We introduce next the concept of a group of walls. Let h ¥ d0, d ¥DL,
and denote by r(h, d) the number of (vertical or horizontal) plaquettes in d

whose projection is a subset of h. Two standard walls S1, S2 are called close
if there exist h1 ¥ p(S1) and h2 ¥ p(S2) such that

||h1, h2 || <`r(h1, dS1 )+`r(h2, dS2 ) .

A family G of non-empty standard walls is called a group of (standard)
walls if it is admissible and if, for any pair S1, S2 ¥ G, there exists a
sequence T0=S1, T1, T2,..., Tn=S2 of members of G such that Ti and Ti+1
are close for 0 [ i < n.

The origin of a group of walls is defined as the earliest of the origins of
the standard walls therein. We write Gh for the set of all possible groups of
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walls with origin h ¥ d0. As before, we attach to Gh the empty group with
origin h but containing no standard wall which we denote also as Eh.
A family {Gi: 1 [ i [ m} of groups of walls is called admissible if, for i ] j,
there exists no pair S1 ¥ Gi, S2 ¥ Gj such that S1 and S2 are close.

We adopt the convention that, when a group of walls is denoted as Gh
for some h ¥ d0, then Gh ¥ Gh. Thus a family of groups of walls may be
written as a collection G={Gh : h ¥ d0} where Gh ¥ Gh.

Lemma 12. The set DL is in one–one correspondence with both the
collection of admissible families of standard walls, and with the collection
of admissible families of groups of walls.

Equally important to the existence of these one–one correspondences
is their nature, as described in the proof of the lemma. We write dG (res-
pectively dG) for the interface corresponding thus to an admissible family G
of standard walls (respectively an admissible family G of groups of walls).

Proof of Lemma 11. Let d ¥DL have unique wall S=(A, B). By
definition, every plaquette of dg other than those in A 2 B is a c-plaquette,
so that S=dg0(A 2 B) is a union of ceilings C1, C2,..., Cn. Each Ci con-
tains some plaquette hi which is 1-connected to some h −i ¥ A, whence, by
Lemma 10(iii), the height of Ci is determined uniquely by knowledge of S.
Hence d is unique. L

Proof of Lemma 12. Let d ¥DL. Let W1, W2,..., Wn be the non-
empty walls of dg, and write Wi=(Ai, Bi) where Ai=Wi 5 d, Bi=Wi 5
(dg0d). Let si be the altitude of Wi. We claim that y(0, 0, −si)Wi is a standard
wall, and we prove this as follows. Let Cij , j=1, 2,..., k, be the ceilings that
are 0-connected to Wi, and let Hij be the maximal 0-connected set of
plaquettes in d0 0p(Wi) onto which Cij projects. (See Lemma 10(vii).) It
suffices to construct an interface d(Wi) having y(0, 0, −si)Wi as its unique
wall. To this end we add to y(0, 0, −si)Ai the plaquettes in y(0, 0, −si)Cij ,
j=1, 2,..., k, together with, for each j, the horizontal plaquettes in the
maximal 0-connected set of horizontal plaquettes that contains y(0, 0, −si)Cij
and elements of which project onto Hij .

We now define the family {Sh : h ¥ d0} of standard walls by

Sh=˛
y(0, 0, −si)Wi if h is the origin of y(0, 0, −si)Wi,
Eh if h is the origin of no y(0, 0, −si)Wi.

More precisely, in the first case, Sh=(Ah, Bh) where Ah=y(0, 0, −si)Ai and
Bh=y(0, 0, −si)Bi. That this is an admissible family of standard walls follows
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from Lemma 10(viii) and from the observation that si=0 when E(Wi)
5 EcL ]”.

Conversely, let {Sh=(Ah, Bh) : h ¥ d0} be an admissible family of
standard walls. We shall show that there is a unique interface d corre-
sponding in a certain way to this family. Let S1, S2,..., Sn be the non-empty
walls of the family, and let di be the unique interface in DL having Si as its
only wall.

We introduce the partial ordering on the walls given by Si < Sj if
int(Si) ı int(Sj), and we re-order the non-empty walls in such a way that
Si < Sj implies i < j.

When it exists, we take the first index k > 1 such that S1 < Sk and we
modify dk as follows. First we remove the c-plaquettes that project onto
int(S1), and then we add translates of the plaquettes of A1. This is done by
translating these plaquettes so that the base of S1 is raised (or lowered) to
the plane containing the ceiling that is 0-connected to Sk and that projects
on the maximal 0-connected set of plaquettes in d0 0p(Sk) that contains
p(S1). (See Lemma 10(viii).) We write d −k for the ensuing interface. We now
repeat this procedure starting from the set of standard walls S2, S3,..., Sn
and interfaces d2, d3,..., dk−1, d

−

k, dk+1,..., dn. If no such k exists, we continue
the procedure with the interfaces d2, d3,..., dk−1, dk, dk+1,..., dn.

We continue this process until we are left with interfaces d'ik , k=
1, 2,..., r, having indices which refer to standard walls that are smaller than
no other wall. The final interface d is now constructed as follows. For
each k, we remove from the regular interface d0 all horizontal plaquettes
contained in int(Sik ), and we replace them by the plaquettes of d'ik that
project onto int(Sik ).

The final assertion concerning admissible families of groups of walls is
straightforward. L

Next we derive certain combinatorial properties of walls. For S=
(A, B) a standard wall, we write N(S)=|A| and we set P(S)=N(S)−
|p(S)|. For an admissible set F={S1, S2,..., Sm} of standard walls, we write
P(F)=;m

i=1 P(Si), N(F)=;m
i=1 N(Si), and p(F)=1m

i=1 p(Si).

Lemma 13. Let S=(A, B) be a standard wall, and D(S) its height.

(i) N(S) \ 14
13 |p(S)|. Consequently, P(S) \ 1

13 |p(S)| and P(S) \
1
14N(S).

(ii) N(S) \ 1
5 |S|.

(iii) P(S) \ D(S).

Proof. (i) Define for each h0 ¥ d0 the set U(h0)={h ¥ d0: h=h0 or
h ’1 h0}. We call two plaquettes h1, h2 ¥ d0 separated if U(h1) 5 U(h2)=”.
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Denote by Hsep=Hsep(S) ı p(S) a set of pairwise-separated plaquettes in
p(S) having maximum cardinality, and let H=1h1 ¥Hsep [U(h1) 5 p(S)].
Note that

|Hsep | \
1
13 |p(S)|. (35)

For every h0 ¥ p(S), there exists a horizontal plaquette h1 ¥ dS such
that p(h1)=h0. Since A 2 B contains no c-plaquette of dS, it is the case that
h1 is a w-plaquette, whence h1 ¥ A. In particular, N(S) \ |p(S)|.

For h0=p(h1) ¥Hsep where h1 ¥ A, we claim that

|{h ¥ A : either p(h) ı [h0] or p(h) ¥ U(h0)}| \ |U(h0) 5 p(S)|+1. (36)

It follows from (35) and (36) that

N(S) \ C
h0 ¥Hsep

{|U(h0) 5 p(S)|+1}+|p(S)0H|

=|H|+|Hsep |+|p(S)|− |H| \
14
13 |p(S)|

as required.
In order to prove (36), we argue first that U(h0) 5 p(S) contains at

least one (horizontal) plaquette besides h0. Suppose that this is not true.
Then U(h0)0h0 contains the projections of c-plaquettes of dg

S only. By
Lemma 10(ii, iii), these c-plaquettes belong to the same ceiling C and
therefore lie in the same plane. Since h1 is by assumption a w-plaquette,
there must be at least one other horizontal plaquette of dg

S projecting onto
h0. Only one such plaquette, however, is 1-connected with the c-plaquettes.
Since dg

S is 1-connected, the other plaquettes projecting onto h0 must be
1-connected with at least one other plaquette of dg

S. Each of these further
plaquettes projects into p(C), in contradiction of Lemma 10(iv).

We may now verify (36) as follows. Since h1 is a w-plaquette, there
exists h2 ¥ A 2 B, h2 ] h1, such that p(h2)=h0. If there exists such h2
belonging to A, then (36) holds. We assume the contrary, and let h2 be such
a plaquette with h2 ¥ B. Since h1 ¥ A, for every g ¥ U(h0) 5 p(S), g ] h0,
there exists gŒ ¥ A such that p(gŒ) ı [g] and gŒ ’

1 h1. [If this fails for some
g, then, as in the proof of Lemma 10(ii), in any configuration with interface
dS, there exists a path of open edges joining the vertex just above h1 to the
vertex just beneath h1. Since, by assumption, all plaquettes of A 2 B other
than h1, having projection h0, lie in B, this contradicts the fact that dS is an
interface.] If any such gŒ is vertical, then (36) follows. Assume that all such
gŒ are horizontal. Since h2 ¥ B, there exists h3 ¥ A such that h3 ’

1 h2, and
(36) holds in this case also.
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(ii) The second part of the lemma follows from the observation that
each of the plaquettes in A is 1-connected to no more than four horizontal
plaquettes of B.

(iii) Recall from the remark after (35) that A contains at least |p(S)|
horizontal plaquettes. Furthermore, A must contain at least D(S) vertical
plaquettes, and the claim follows. L

Finally in this section, we derive an exponential bound for the number
of groups of walls satisfying certain constraints.

Lemma 14. Let h ¥ d0. There exists a constant K such that: the
number of groups of walls G ¥ Gh satisfying P(G)=k is no greater
than Kk.

Proof. Let G={S1, S2,..., Sn} ¥ Gh where the Si=(Ai, Bi) are non-
empty standard walls and S1 ¥Sh. For j ¥ d0, define

Rj={hŒ ¥ d0 : || j, hŒ|| [`r(j, dG) }0p(G)

and

G̃=10
n

i=1
[Ai 2 Bi]2 2 1 0

j ¥ p(G)
Rj 2.

There exist constants CŒ and Cœ such that, by Lemma 13,

|G̃| [ |G|+CŒ C
j ¥ p(G)

r(j, dG) [ Cœ |G| [ 5 · 14CœP(G),

where |G|=|1i (Ai 2 Bi)|.
It may be seen that G̃ is a 0-connected set of plaquettes containing h.

Moreover, the 0-connected sets obtained by removing all the horizontal
plaquettes hŒ ¥ G̃, for which there exists no other plaquette hœ ¥ G̃ with
p(hœ)=p(hŒ), are the standard walls of G. Hence, the number of such
groups of walls with P(G)=k is no greater than the number of
0-connected sets of plaquettes containing no more than 70Cœk elements
including h. It is proved in ref. 1, Lemma 2, that there exists n <. such
that the number of 0-connected sets of size n containing h is no larger than nn.
Corresponding to each such set there are at most 2n ways of partitioning the
plaquettes between theAi and theBi. The claim of the lemma follows. L

8. EXPONENTIAL BOUNDS FOR PROBABILITIES

Let G={Gh: h ¥ d0} be a family of groups of walls. If G is admissible,
there exists by Lemma 12 a unique corresponding interface dG. We may
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pick a random family z={zh: h ¥ d0} of groups of walls according to the
probability measure PL induced by fL thus:

PL(z=G)=˛ f̄L(D=dG) if G is admissible,
0 otherwise.

Lemma 15. Let q \ 1, and let pg be as in Proposition 7. There exist
constants C3, C4 such that

PL(zhŒ=GhŒ | zh=Gh for h ¥ d0, h ] hŒ) [ C3[C4(1−p)]P(GhŒ),

for p > pg, and for all hŒ ¥ d0, GhŒ ¥ GhŒ, L > 0, and for any admissible
family {Gh: h ¥ d0, h ] hŒ} of groups of walls.

Proof. The claim is trivial if G={Gh: h ¥ d0} is not admissible, and
therefore we may assume it admissible. Let hŒ ¥ d0, and let GŒ agree with G
except at hŒ, where GhŒ is replaced by the empty group EhŒ. We write d=dG

and dŒ=dGŒ. Then

PL(zhŒ=GhŒ | zh=Gh for h ¥ d0, h ] hŒ) [
f̄L(d)
f̄L(dŒ)

. (37)

We will use (31) to bound the right-hand side of this expression. In doing
so, we shall require bounds for |d|− |dŒ|, |d̄0d|− |d̄Œ0dŒ|, Kd−KdŒ, and

C
e ¥ E(d) 5 EL

fp(e, d, L)− C
e ¥ E(dŒ) 5 EL

fp(e, dŒ, L). (38)

It is easy to see from the definition of d that

|d|=|d0 |+ C
h ¥ d0

[N(Gh)− |p(Gh)|],

and it follows that

|d|− |dŒ|=N(GhŒ)− |p(GhŒ)|=P(GhŒ). (39)

A little thought leads to the inequality

|d̄0d|− |d̄Œ0dŒ| \ 0, (40)

and the reader may wish to omit the explanation which follows. We claim
that (40) follows from the inequality

|P(d̄)|− |P(d̄Œ)| \ 0, (41)
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where P(d̄) (respectively P(d̄Œ)) is the set of plaquettes in d̄0d (respectively
d̄Œ0dŒ) which project into [p(GhŒ)]. In order to see that (41) implies (40), we
argue as follows. We may construct the extended interface d̄ from d̄Œ in the
following manner. First we remove all the plaquettes from d̄Œ that project
into [p(GhŒ)], and we fill the gaps by introducing the walls of GhŒ one by
one along the lines of the proof of Lemma 12. Then we add the plaquettes
of d̄0d that project into [p(GhŒ)]. During this operation on interfaces, we
remove P(d̄Œ) and add P(d̄); the claim follows.

By Lemma 10(viii), there exists no vertical plaquette of d̄Œ0dŒ that
projects into [p(GhŒ)] and is in addition 1-connected to some wall not
belonging to GhŒ. Moreover, since all the horizontal plaquettes of d̄Œ belong
to the semi-extended interface dŒg, those that project onto [p(GhŒ)] are
c-plaquettes of dŒg; hence, such plaquettes lie in dŒ. It follows that P(d̄Œ)
comprises the vertical plaquettes that are 1-connected with p(GhŒ).

It is therefore sufficient to construct an injective map T that maps each
vertical plaquette 1-connected with p(GhŒ) to a different vertical plaquette
in P(d̄). We noted in the proof of Lemma 13(i) that, for every h0 ¥ p(GhŒ),
there exists a horizontal plaquette h1 ¥ d with p(h1)=h0. For every vertical
plaquette hv ’1 h0, there exists a translate hv1 ’

1 h1. Suppose hv lies above d0.
If hv1 ¥ d̄0d, we set T(hv)=hv1. If hv1 ¥ d, we consider the (unique) vertical
plaquette ‘‘above’’ it, which we denote hv2. We repeat this procedure up
to the first n that we meet a plaquette hvn ¥ d̄0d, and we set T(hv)=hvn.
When hv lies below d0, we act similarly to find a plaquette T(hv) of d̄0d

beneath hv. The resulting T is as required.
Turning to Kd−KdŒ, we recall the notation after Proposition 6. Notice

that exactly two of the components (S id, U
i
d) are infinite, and we suppose

that these are assigned indices 1 and 2. For i=3, 4,..., Kd, let H(S id) be the
set of plaquettes that are the dual to an edge having one vertex in S id and
one vertex in “S id. The finite component (S id, U

i
d) is in a natural way sur-

rounded by a particular wall, namely that to which all the plaquettes of
H(S id) belong. This follows from Lemma 10(v, viii) and the facts that

Pi={p(h(Ox, x+(0, 0, 1)P)) : x ¥ S
i
d}

is a 1-connected subset of d0, and that [p(H(S id))]=[Pi].
Therefore,

Kd−KdŒ=Kdœ−2, (42)

where dœ=dGhŒ . It is elementary by Lemma 13(i) that

Kdœ [ 2N(GhŒ) [ 28P(GhŒ). (43)
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Finally, we estimate (38). Let H1, H2,..., Hr be the maximal 0-con-
nected sets of plaquettes in d0 0p(GhŒ), and let di (respectively d −i) be the set
of plaquettes of d (respectively dŒ) that project into [Hi]. Recalling the
construction of an interface from its standard walls in the proof of Lemma
12, there is a natural one–one correspondence between the plaquettes of di
and those of d −i, and hence between the plaquettes in U=1 r

i=1 di and those
in UŒ=1 r

i=1 d −i. We denote by T the corresponding bijection that maps an
edge e with h(e) ¥1 r

i=1di to the edge T(e) with corresponding dual
plaquette in 1 r

i=1 d −i. Note that T(e) is a vertical translate of e.
If e is such that h(e) ¥ U,

G(e, d, EL; T(e), dŒ, EL) \ ||pŒ(h(e)), p(GhŒ)||−1,

where pŒ(h) is the earliest plaquette hœ of d0 such that p(h) ı [hœ], and

||h1, H||=min{||h1, h2 || : h2 ¥H}.

Let p > pg. Using the notation of Proposition 7 and Lemma 9,

: C
e ¥ E(d) 5 EL

fp(e, d, L)− C
e ¥ E(dŒ) 5 EL

fp(e, dŒ, L) :

[ C
e ¥ E(U) 5 EL

|fp(e, d, L)−fp(T(e), dŒ, L)|

+ C
e ¥ E(d0U) 5 EL

fp(e, d, L)+ C
e ¥ E(dŒ0UŒ) 5 EL

fp(e, dŒ, L)

[ C2ec C
e ¥ E(U) 5 EL

exp (− c ||pŒ(h(e)), p(GhŒ)||)+C1[N(GhŒ)+|p(GhŒ)|].
(44)

By Lemma 13, the second term of the last line is no greater than C5P(GhŒ)
for some constant C5. Using the same lemma and the definition of a group
of walls, we see that the first term is no larger than

C2ec C
h ¥ d0 0p(GhŒ)

r(h, d) exp(− c ||h, p(GhŒ)||)

[ C2ec C
h ¥ d0 0p(GhŒ)

||h, p(GhŒ)||2 exp(− c ||h, p(GhŒ)||)

[ C2ec C
hœ ¥ p(GhŒ)

C
h ¥ d0 0p(GhŒ)

||h, hœ||2 exp(− c ||h, hœ||)

[ C6 |p(GhŒ)| [ 13C6P(GhŒ), (45)

for some constant C6.
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The required conditional probability is, by (31) and (37),

p |d̄0d|− |d̄Œ0dŒ|(1−p) |d|− |dŒ|qKd−KdŒ

× exp 1 C
e ¥ E(d) 5 EL

fp(e, d, L)− C
e ¥ E(dŒ) 5 EL

fp(e, dŒ, L)2 ,

which, by (39)–(45), is bounded above as in the statement of the lemma.
L

9. MAIN THEOREMS

Let h ¥ d0. For w ¥ Wm
L, we write hY. if there exists a sequence

h=h0, h1,..., hr of plaquettes in d0 such that: hi ’
1 hi+1 for 0 [ i < r; each hi

is a c-plaquette of D(w); hr=h(e) for some e ¨ EL.

Theorem 2. Let q \ 1. For all E > 0, there exists p̂=p̂(E) < 1 such
that, if p > p̂,

f̄L(hY.) > 1− E (46)

for all h ¥ d0 and all L \ 1.

Since, following Theorem 2, h is a c-plaquette with high probability, it
follows by Proposition 6 and the discussion immediately thereafter that the
vertex of Z3 immediately beneath (respectively above) the centre of h is
joined to “−LL (respectively “+LL) with high probability. Thus Theorem 1
holds. Furthermore, since hY. with high probability, such connections
may be found within the plane of Z3 comprising vertices x with x3=0
(respectively x3=1).

The existence of non-translation-invariant (conditioned) random-cluster
measures follows from Theorem 2, as in the following sketch argument.
For e ¥ E, we write e ±=e±(0, 0, 1). Let w ¥ W. If h=h(e) ¥ d0 is a
c-plaquette of D(w), then e is closed, and h(e ±) ¨ D(w). The configurations
in the two regions above and below D(w) are governed by wired random-
cluster measures. [We have used Lemma 8 here.] Hence, under (46),

f̄L(w(e)=1) [ E, f̄L(w(e ±)=1) \
(1− E) p
p+(1−p) q

,

by Lemma 1. Note that these inequalities concern the probabilities of
cylinder events.

Our second main result concerns the vertical displacement of the
interface, and states roughly that there exists a geometric bound on the tail
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of the displacement, uniformly in L. Let d ¥DL, (x1, x2) ¥ Z2, and write
x=(x1, x2,

1
2). We define the displacement of d at x by

D(x, d)=sup{|d− 12 | : (x1, x2, d) ¥ [d]}.

Theorem 3. Let q \ 1. There exists p̂ < 1 and a(p) satisfying a(p) > 0
when p > p̂ such that

f̄L(D(x, D) \ d) [ e−da(p) for d \ 1,

for all (x1, x2) ¥ Z2 and L \ 1.

Proof of Theorem 2. Let h ¥ d0. We have not so far specified the
ordering of plaquettes in d0 used to identify the origin of a standard wall or
of a group of walls. We assume henceforth that this ordering is such that:
for all h1, h2 ¥ d0, h1 > h2 implies ||h, h1 || \ ||h, h2 ||.

For any standard wall S there exists, by Lemma 10(vi), a unique
maximal infinite 1-connected component I(S) of d0 0p(S). Let w ¥ Wm

L. The
interface D(w) gives rise to a family of standard walls, and hY. if and
only if, for each such wall S, h belongs to I(S). (This is a consequence of a
standard property of Z2; see the appendix of ref. 26.) Suppose on the con-
trary that h ¨ I(Sj) for some such standard wall Sj, for some j ¥ d0, belong-
ing in turn to some maximal admissible group GhŒ ¥ GhŒ of walls of D, for
some hŒ ¥ d0. We have by Lemma 13 and the above ordering on members
of d0 that

13P(GhŒ) \ |p(GhŒ)| \ |p(Sj)| \ ||h, j||+1 \ ||h, hŒ||+1.

Let K be as in Lemma 14, and pg, C4 as in Lemma 15. We let p̃ be
sufficiently large that p̃ > pg and

l=l(p)=− 113 log[KC4(1−p)]

satisfies l(p̃) > 0. By the latter lemma, when p > p̃,

1− f̄L(hY.) [ C
hŒ ¥ d0

PL(P(zhŒ) \
1
13 (||h, hŒ||+1))

[ C
hŒ ¥ d0

C
n \ (||h, hŒ||+1)/13

C
G ¥ GhŒ :
P(G)=n

PL(zhŒ=G)

[ C
hŒ ¥ d0

C
n \ (||h, hŒ||+1)/13

KnC3[C4(1−p)]n

[ C3 C
hŒ ¥ d0

exp(−l(||h, hŒ||+1)) [ C7e−l,
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for appropriate constants Ci. The claim follows on choosing p sufficiently
close to 1. L

Proof of Theorem 3. This is related to the proof of Proposition 2.4
of ref. 19. If D(x, D) \ d, there exists r satisfying 1 [ r [ d such that the
following statement holds. There exist distinct plaquettes h1, h2,..., hr ¥ d0,
and maximal admissible groups Ghi , 1 [ i [ r, of walls of D such that:
x=(x1, x2,

1
2) lies in the interior of one or more standard wall of each Ghi ,

and ; r
i=1 P(Ghi ) \ d (recall Lemma 13(iii)). Let mi=N 113 (||x, hi ||+1)M where

||x, h||=||x−y|| and y is the centre of h. By Lemma 15, and as in the
previous proof,

f̄L(D(x, D) \ d) [ C
h1, h2,..., hr
1 [ r [ d

PL 1C
i

P(zhi ) \ d,P(zhi ) \ mi K12

= C
h1, h2,..., hr
1 [ r [ d

C
.

s=d
C

z1, z2,..., zr :
z1+z2+· · ·+zr=s

zi \ mi K1

PL(P(zhi )=zi for 1 [ i [ r)

[C
hi

C
s \ d
C8[KC4(1−p)] s C

z1, z2,..., zr :
z1+z2+· · ·+zr=s

zi \ mi K1

1,

for some constant C8. The last summation is the number of ordered parti-
tions of the integer s into r parts, the ith of which is at least mi K1. By
adapting the classical solution to this enumeration valid for the case mi — 1
(see, for example, ref. 35), we see that

C
z1, z2,..., zr :

z1+z2+· · ·+zr=s
zi \ mi K1

1 [ 1 s−1−;i mi K1
r−1
2 [ 2 s−1−; i mi K1 [ 2 s−1−; i mi,

whence, for some C9,

f̄L(D(x, D) \ d) [ C9 C
s \ d
[2KC4(1−p)] s 5 C

h ¥ d0

2−N||x, h||/13M6
d

,

which decays exponentially as dQ. when 2KC4(1−p) is sufficiently
small. L
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27. J. Černý and R. Kotecký, Interfaces for random cluster models, (2001).
28. H. Kesten, Aspects of first-passage percolation, in École d’Eté de Probabilités de Saint
Flour XIV-1984, P. L. Hennequin, ed., Lecture Notes in Mathematics, Vol. 1180 (Springer,
Berlin, 1986), pp. 125–264.

29. M. Aizenman, J. T. Chayes, L. Chayes, J. Fröhlich, and L. Russo, On a sharp transition
from area law to perimeter law in a system of random surfaces, Comm. Math. Phys.
92:19–69 (1983).

30. G. R. Grimmett and A. E. Holroyd, Entanglement in percolation, Proc. London Math.
Soc. 81:485–512 (2000).

31. R. Cerf and R. Kenyon, The low-temperature expansion of the Wulff crystal in the 3D
Ising model, Comm. Math. Phys. 222:147–179 (2001).

32. K. Kuratowski, Topology, Vol. 2 (Academic Press, New York, London, 1968).
33. M. F. Sykes and J. W. Essam, Exact critical percolation probabilities for site and bond

problems in two dimensions, J. Math. Phys. 5:1117–1127 (1964).
34. L. Russo, A note on percolation, Z. Wahrscheinlichkeit 43:39–48 (1978).
35. M. Hall, Combinatorial Theory, 2nd ed. (Wiley, New York, 1998).

Rigidity of the Interface for Percolation 37


	 1. INTRODUCTION
	CONDITIONED RANDOM-CLUSTER MEASURES
	SUMMARY OF MAIN RESULTS
	PROPERTIES OF RANDOM-CLUSTER MEASURES
	 5. INTERFACES AND GEOMETRY
	PROBABILITY DISTRIBUTION OF THE INTERFACE
	GEOMETRY OF INTERFACES
	EXPONENTIAL BOUNDS FOR PROBABILITIES
	MAIN THEOREMS
	ACKNOWLEDGMENTS

